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Abstract
In this paper, we calculate the current and shot noise for electrons transporting
through a single quantum dot with phonon and impurity scatterings. By
iteratively calculating the surface Green function, we obtain the self-energy due
to coupling between the quantum dot and the semi-infinite leads. Significant
couplings to the localized phonon modes and impurity states are included in our
model exactly. Our results show that the resonance transmission coefficient and
differential conductance split into small peaks in the presence of dot–impurity
interaction. Satellite peaks caused by phonon emission (absorption) appear in
our results too. As the numerical results, impurity states have weak influence
on the suppression of shot noise. On the other hand, shot noise in the conductor
will be enhanced if the phonon mode effects are included in our calculations.

1. Introduction

With advanced microfabrication and self-assembly techniques, it is now possible to explore
the transport properties of quantum dots and molecular electronics. The quantum nature
of these devices has attracted much attention and a lot of potential applications have been
proposed. For example, large on–off ratios and negative differential resistance in a molecular
electronic device have been experimentally obtained [1] and theoretically studied [2]. Coherent
superposition of photon- and phonon-assisted tunnelling in coupled quantum dots has been
experimentally observed [3] too. Recently, the Kondo effect in a quantum dot molecule
coupled with an Anderson impurity has been theoretically investigated using the infinite-U
slave-boson mean-field approximation [4]. It is found that the single-channel conductance can
be completely suppressed by Kondo scattering. The effects of interdot Coulomb interaction
on the transport properties of a double-quantum-dot structure have been investigated by a
Green function approach [5]. Numerical results show that the interdot interaction can produce
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a significant change in the transport properties of this coupled quantum dot system even if
it is much weaker than the on-dot Coulomb interaction. These achievements motivate the
rapidly growing research on quantum dot and molecular electronic devices. Current research
uses molecules and quantum dots in such electronics applications as interconnects, switches,
rectifiers, transistors, nonlinear components, photovoltaics, and memories [6, 7]. However,
the considerable dephasing induced by various scatterings imposes a limit to these potential
applications. The investigation of dissipation processes in these nanostructures is thus of great
significance. But it is nontrivial to treat these interactions with a fully quantum mechanical
concept. Different methods such as the Green function method, the master equation approach,
and the bosonization technique have been developed to handle this problem. In the scattering
approach, the current through an elastic molecular wire junction can be viewed as charge carrier
transmission and expressed as the well known Landauer formula [8]. But this formula does not
include the inelastic scattering effects caused by interaction. Hence a generalized Landauer
formula for current through a region of interacting electrons is derived by the nonequilibrium
Keldysh formula [9].

Recently, theoretical and experimental research on shot noise in small conductors has
attracted much attention [10–17]. Current noise is caused by the time-dependent fluctuation.
It is interesting that noise in mesoscopic structures can reveal the kinetics of electrons [16].
Information which cannot be obtained by measuring the conductance can be obtained from
the measurement of the noise characteristics of a conductor. At nonzero temperature, both
thermal noise and shot noise are two fundamental noise sources. The thermal noise caused
by thermal fluctuations is related to the conductance of the system. The shot noise is a direct
consequence of the discrete nature of the charge transport when the system is out of equilibrium.
In the past years, most of the theoretical studies on shot noise in mesoscopic systems have
concentrated on noninteracting electrons. However, scattering effects in the quantum dots have
shown profound influences on the noise spectra of mesoscopic conductors. For example, both
suppression [18–20] and enhancement [13, 21] of shot noise from the Poisson value of shot
noise 2eI due to Coulomb interaction have been observed by several experiments. Gurvitz
et al systematically studied the current and shot noise of mesoscopic devices interacting with
environment or detectors by using the Bloch-type rate equations [10, 11, 22]. By employing a
finite-U slave-boson mean-field approach, Dong et al numerically investigated the suppression
of shot noise due to the Kondo-correlation effect [23]. Recently, effects of the phonon–electron
coupling on the current and shot noise behaviour of the quantum dot devices have been studied
by using the nonequilibrium Keldysh formula [14]. It has been experimentally found that
the presence of the impurity states in low dimensional nanostructures plays an important role
in the transport and optical properties [17, 24, 25]. For example, noise caused by capture
and emission of one electron by a single trap state was recently studied experimentally and
theoretically [17].

The purpose of this paper is to focus on the superposition of the impurity states and
phonon modes effects on the transport properties of a single quantum dot device coupled with
two semi-infinite leads. In contrast to the strong Coulomb repulsion case, we will focus on the
opposite limit where the quantum dot electron can interact with phonon modes and the impurity
states while the electron–electron interaction in the impurity can be ignored. We calculate the
current and shot noise of a single molecular quantum dot interacting with impurity states and
localized phonon modes. All the other interactions in the molecular devices are neglected. In
order to simplify our discussions, the coupling between the dots and the leads is assumed to
be small and only the quantum dot electrons can interact with the impurity states and phonon
mode. Thus we can neglect the coupling between the phonon mode and impurity states with
the leads.
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Figure 1. Transport through a molecular
quantum dot system with one level. Electrons in
the left (L) and right (R) leads can hop onto/off
the quantum dot. The quantum dot can interact
with the impurity states and the phonon modes
existing in this system.

2. Theoretical model

We consider a tight binding model Hamiltonian and neglect any effects of electron–electron
interaction. The system we study consists of a semi-infinite left lead, a central part and a semi-
infinite right lead. A schematic diagram of this mesoscopic device is shown in figure 1. The
degrees of freedom of the central part are characterized by two coupled sets of states. One is
the quantum dot which is coupled with the lead via tunnelling. The other is the impurity state.
Electron hopping in the quantum dot, from the leads, can either hop forward or back to the
leads or to the impurity due to internal scattering. Electrons in the impurity state can hop back
to the quantum dot too. Here we assume the impurity states to be isolated and noncorrelated.
Only a single impurity state f exists in the system. Interaction between the electrons and the
phonon mode localized on the dot is also included in our model. Quantum dot phonons play an
important role in the optical and electrical properties of quantum dots. The phonon effects are
taken into consideration by the Einstein model, where all the phonons have the same energy
ω0 (h̄ = 1). This simplest single-phonon mode is used to address the phonon effects in the
semiconductor quantum dot due to spatial confinement [26, 27] or the vibrational degrees of
freedom in the molecular dot [14].

The total Hamiltonian is given by

H = HL + HR + HC + HT + Hph + Himp + He−ph + He−imp (1)

where the term

HL + HR =
∑

i �=0,−1

t (c†
i ci+1 + h.c.) (2)

describes the left and the right leads. Only the nearest neighbour interactions are important.
The hopping matrix element on the two leads is t . ci (c†

i ) is the annihilation (creation) operator
acting on site i .

The term HC in equation (1) describes the noninteracting quantum dot and has the following
form:

HC = ε0d†d, (3)

where ε0 denotes the energy of the discrete dot level. There should be many discrete energy
levels in a quantum dot. In our case, we take only one energy level into account for simplicity.
This simplicity is valid for systems with resonant level such as a molecule or single-level
quantum dot. In these systems, the contribution by the other dot states can be ignored [27].

The phonon modes and the isolated impurity states Hamiltonian are given by

Hph = ω0a†a, (4)

Himp = f b†b, (5)

respectively.



8288 B H Wu and J C Cao

The other terms HT, He−ph and He−imp describe the tunnelling processes between the dot
and the electrodes, the interaction between the dot and the phonon mode and the interaction
between the dot and the impurity state respectively. These terms take the form

HT = v(d†c1 + d†c−1 + h.c.), (6)

He−ph = λ(a + a†)d†d, (7)

He−imp = s(b†d + h.c.), (8)

where v is the component of the tunnelling matrix and represents the energy associated with
hopping onto/off the dot, λ is the coupling constant between the dot electrons and the phonon
mode and s is the coupling strength to the impurity state. Here we assume that the electron–
phonon interaction is restricted to the quantum dot.

Following the standard procedures, we can diagonalize the Hamiltonian H0 = HC + Hph +
He−ph by making a canonical transformation [28, 14]. The transformation is H̄0 = eS H0e−S ,
where S = d†d(λ/ω0)(a† − a). This canonical transformation gives

H̄0 = eS H0e−S = d†d(ε0 − �) + ω0a†a, (9)

where � = λ2/ω0. It is straightforward to see

d̄ = d X; d̄† = d† X†, (10)

where the operator X is defined as

X = exp[−λ/ω0(a
† − a)]. (11)

The dot–electron retarded (r) and advanced (a) Green function can then be written as

Gr(a)(t) = ∓iθ(±t)〈{d̄(t), d̄†(0)}〉e〈X (t)X†(0)〉ph

= Ḡr(a)(t)〈X (t)X†(0)〉ph. (12)

The factor 〈X (t)X†(0)〉ph is due to the coupling to the phonon mode and can be written as

〈X (t)X†(0)〉ph = e−�(t), (13)

where

�(t) = (λ/ω0)
2[Nph(1 − eiω0 t) + (Nph + 1)(1 − e−iω0 t)]

and Nph is the phonon number. Equation (13) can be expanded in a power series in exp(iω0t)
at zero or finite temperature [28]. The Green function Ḡr(a) can be obtained by the equation
of motion method. From appendix A, the quantum dot Green function can be written as

Ḡr
Dot(ω) = ω − f

(ω − (ε0 − �) − �r)(ω − f ) − s2
, (14)

where the retarded self-energy �r = �r
L + �r

R is due to the tunnelling into the left and
the right electrical leads. The leads are assumed to be unaffected by the localized phonon
modes and impurity states. Calculation details of the Green function and the self-energy are
presented in appendices A and B respectively. The Green function Gr(a)

Dot can be solved by using
equations (12)–(14).

If the electron–impurity and electron–phonon coupling is weak enough, the current
through the quantum dots with phonon modes and impurity states can be given by the
generalized Landauer formula [9]

I = 2e

h

∫
dε [ fL − fR]T, (15)

where T = Ga
Dot�LGr

Dot�R is the transmission coefficient and � = i(�r−�a) is the level-width
function. The prefactor 2 in equation (15) arises from the spin degeneracy. The level-width
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function is commonly determined under the wide-band limit approximation. This limit reflects
no feature of the two semi-infinite lead and loses much information on the coupling between
the quantum dot and the leads. In our calculations, the self-energy is iteratively determined
by the surface Green function instead of by simply using the wide-band limit. Details of the
calculation are presented in appendix B. fL(ε) = f (ε + eV/2) and fR(ε) = f (ε − eV/2) are
the Fermi distribution functions of the two leads when the quantum dot device is biased with
the voltage V . Here, an assumption of a symmetric voltage drop through the whole system is
made.

From equation (15) the differential conductance is found to be

C = d I

dV
= e2β

h

∫
dε [ fL(1 − fL) + fR(1 − fR)]T, (16)

where β = 1/kBT, kB is the Boltzmann constant and T is the temperature.
Due to the particle nature of the charge transport, shot noise in the two-terminal electrical

conductor is the direct result of the time-dependent fluctuation of current. Due to current
conservation, the correlation function of current is defined as [14, 15]

S(t, t ′) = SL,L(t, t ′) = 1
2 〈{� ÎL(t),� ÎL(t ′)}〉, (17)

where we have introduced the operator � ÎL(t) = ÎL(t) − 〈 ÎL(t)〉 and {· · ·} is the
anticommutator. The Fourier transform of this correlation function S(ω) is always referred
to as noise power. We will only be interested in zero-frequency limit noise S(0). In the
weak electron–phonon and electron–impurity coupling limit, the shot noise of the quantum
dot system can be written in terms of transmission coefficient as [15]

S(0) = 4e2

h

∫
dε {[ fL(1 − fL) + fR(1 − fR)]T + ( fL − fR)2(1 − T )T }. (18)

Here the first term is the equilibrium noise contributions, and the second term is the
nonequilibrium or shot noise contribution to the power spectrum.

3. Numerical results and discussion

In this section, the numerical results for the current and the noise are presented and discussed.
Current behaviour in a molecular quantum dot influenced by the coupled phonon mode

has been studied in detail before [27, 28]. The absorption or emission of an n-phonon process
shows a fundamental effect on the transport characteristics of the mesoscopic system. We will
focus on the case where an impurity state and localized phonon mode in the central part are
coexistent and can interact with the quantum dot simultaneously.

From equations (15) and (18), we can see that the transmission coefficient is the key
parameter in determining the transport properties of the mesoscopic conductor. In figure 2,
transmission coefficients with different quantum dot–impurity coupling strength s are plotted.
The energy of the quantum dot level ε0 = 5.0 (in unit of h̄ω0). The impurity states have
the same energy level as the quantum dot. The quantum dot–phonon coupling strength is
fixed at λ = 0.4. The temperature is kBT = 1.5. The maximum transmission coefficient
is less than unity due to the electron–phonon interaction at finite temperature. When s = 0,
the quantum dot does not interact with the impurity state. Only the phonon modes are taken
into account. We can see that the resonance has shifted by � to the left due to electron–
phonon interaction. Small resonant shoulders at the right and left of the main resonant peak
are due to the absorption and emission of phonons. The separation between these peaks
is just the frequency of the phonon mode. When the impurity states are included in the
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Figure 2. Transmission coefficient as
a function of the energy at different
dot–impurity coupling strengths. Solid
curve, s = 0; dashed curve, s = 0.2;
dotted curve, s = 0.4; dot–dashed
curve, s = 0.6. Here, λ = 0.4, f = 5.0
and kBT = 1.5.

Figure 3. Transmission coefficient as
a function of the energy at different
impurity state energy levels. Solid
curve, f = 4.6; dashed curve, f = 4.8;
dotted curve, f = 5.0; dot–dashed
curve, f = 5.2. Here, λ = s = 0.4
is fixed and kBT = 1.5.

calculation (s �= 0), the transmission coefficient resonant peak will be split into two peaks.
The transmission coefficient at the impurity state energy will be zero. Small resonant peaks
due to dot electron–phonon interaction are clearly shown in this figure even in the presence
of impurity states. The splitting of the main resonant peak can be explained as follows. The
central part energy levels are not only determined by the quantum dot when impurity states
exist. The eigenstates of the central part are the combination of the quantum dot level and
the impurity state energy. This is analogous to the formation of a two-atom molecule. The
separation between the two final energy levels is relative to the coupling strength between
these two states. The separation between the two split peaks increases with the coupling
strength. Zero transmission coefficient at the impurity state energy can be directly seen from
equation (14), where the Green function at ω = f is zero in the presence of dot–impurity
interaction. Since the resonance energy of the central part is not only determined by the dot
energy but also by the impurity level, the transmission coefficient is expected to be sensitive
to the location of the impurity states. In figure 3, transmission coefficients are presented
at different impurity state energies. The quantum dot–phonon coupling strength is fixed at
λ = 0.4 and the coupling between the quantum dot and the impurity state is set to be s = 0.4.
The quantum dot energy is set to be 5. When the impurity state energy f varies from 4.6 to 5.2,
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Figure 4. Differential conductance
versus voltage at different dot–impurity
coupling strengths in the presence of
dot electron–phonon interaction. Solid
curve, s = 0; dashed curve, s = 0.4.
Here, λ = 0.7 and f = 5.0.

Figure 5. Differential conductance
versus voltage at different electron–
phonon coupling strengths in the
presence of dot–impurity interaction.
Solid curve, λ = 0.7; dashed curve,
λ = 0.5; dotted curve, λ = 0.3. Here,
s = 0.4 and f = 5.0.

the transmission resonance energy shifted to a higher value. This indicates that by changing
the relative places of the impurity state and the quantum dot energy level, the resonant energies
can be tuned.

Figures 4 and 5 depict the differential conductance using equation (16) with different
coupling strengths. In figure 4, quantum dot–phonon coupling strength is fixed at λ = 0.7.
The differential conductance is calculated in the presence (s = 0.4) and absence (s = 0) of
dot–impurity state interaction. We can see that the differential conductance is sensitive to the
existence of interaction between the dot and the impurity states. If there is no impurity state
effect (s = 0), a shoulder to the right of the resonant energy appears in the plot due to strong
electron–phonon coupling. The temperature in our calculation is low (kBT = 0.1). There
are no available phonons to absorb and only the emission processes contribute to the transport
behaviour. Thus, no satellite peaks at the left of the resonant peak are observed. In the presence
of quantum dot–impurity state interaction (s = 0.4), the peak of the differential conductance
shifts to the left. This is in accordance with figure 2, where the transmission coefficient splits
due to quantum dot–impurity coupling. The first transmission coefficient peak appears to the
left of the original resonance peak. In figure 5, we calculate the differential conductance with
different electron–phonon coupling strengths. In our calculations, electron–impurity coupling
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Figure 6. The Fano factor versus the
voltage. Solid curve, λ = s = 0; dashed
curve, λ = 0.5, s = 0; dotted curve,
λ = 0, s = 0.4; dot–dashed curve,
λ = 0.5, s = 0.4.

strength (s = 0.4) and the temperature (kBT = 0.1) are fixed. The differential conductance
will show two peaks in the presence of impurity states. But these peaks can be reduced by
the phonon effects. From figure 5, we can see that the differential conductance amplitude
decreases with the increase of λ. At the same time, the second peak shows a much greater
reduction in the coexistence of impurity states and phonon mode scatterings.

Different scattering effects on the shot noise power spectrum can be conveniently
characterized by the Fano factor which is defined as the ratio of the shot noise and the full
Poisson value. The Fano factor γ can be written as

γ = S(0)

2eI
. (19)

The Fano factor is a useful quantity to characterize the suppression of the shot noise from the
full Poisson value. In figure 6, we depict the Fano factor as a function of the applied voltage at
four different sets of electron–phonon and dot–impurity coupling strength parameters. When
the applied voltage is small, the Fano factor is nearly unity. But when electrons in the lead can
resonantly transport though the quantum dot with the increase of the applied voltage, the Fano
factor will be suppressed. From figure 6, we can see that the resonance energy is shifted to
the lower energy side when the dot–impurity interaction is turned on. This can be explained
by the resonance transmission coefficient splitting due to dot–impurity interaction depicted in
figure 2. When there is no electron–phonon interaction (λ = 0) and the applied voltage is
large, the Fano factor will approach the well known limit γ = 0.5. The minimum Fano factor
value appears near the resonance. If the electron–phonon interaction is turned on (λ = 0.5),
the Fano factor is much larger than that in the absence of the electron–phonon interaction
(λ = 0) no matter whether the dot–impurity interaction is turned on or not. This is due to
the weaker resonant transmission coefficient when the quantum dot can strongly interact with
the localized phonon modes. The electron–phonon interaction is dominant in determining the
shot noise spectra. This suggests a more efficient noise reduction for conductors with a weaker
electron–phonon interaction.

4. Conclusions

Using the generalized Landauer formula, we have numerically studied the current and shot
noise of a single quantum dot coupled to both the impurity states and the phonon modes.
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Satellite peaks appear due to the electron–phonon interaction. The presence of impurity states
will split the resonant peak associated with the quantum dot energy level. By tuning the
impurity state energy or the dot–impurity coupling strength, the splitting can be adjusted. This
can be experimentally achieved by applying a gate probe to the single quantum dot. When the
probe is close to the quantum dot, they can interact with each other. By tuning the interaction
strength of the probe and the quantum dot, changes of the splitting of the resonant peak might
be experimentally observed.
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Appendix A. Green function of the central part

If a quantum dot is coupled to the left and right semi-infinite lead, we can divide the system
into three parts: the central part (C), the left lead (L) and the right lead (R). The Green function
can be expressed as

G = (ω − H )−1 =
(

ω − HL −HLC 0
−HCL ω − HC −HCR

0 −HRC ω − HR

)−1

. (A.1)

The central part Green function can then be written as

GC = (ω − HC − �R − �L)−1, (A.2)

where �L(R) = HCL(R)GL(R)HL(R)C is the self-energy due to the coupling between the central
part and the two leads.

If an impurity state exists in the central part and this impurity state can interact with the
quantum dots, the Hamiltonian is given by

H = HL + HR + HT + HC + Himp + He−imp, (A.3)

where HL, HR, HC, HT, Himp and He−imp are given in equations (2), (3), (5), (6) and (8).
The Green function for the central part consisting of the quantum dots and the impurity

states is then written in the matrix form as

GC(ω) =
(

ω − ε0 − �L − �R −s
−s ω − f

)−1

. (A.4)

The quantum dot Green function is the (1, 1) term of the above matrix

GDot(ω) = ω − f

(ω − ε0 − �L − �R)(ω − f ) − s2
. (A.5)

Appendix B. Calculation of the self-energy

Consider semi-infinite periodic layers with an edge. We can divide the lead into layers and
assume only the overlap between the nearest neighbours is nonzero. A quantum dot coupled
to this lead only interacts with the surface layer of the lead. In the following, we will calculate
the self-energy due to the coupling between the dot and the lead by the surface Green function
instead of by simply assuming the wide-band limit.
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Figure B.1. Self-energy profile due to
the coupling between the semi-infinite
lead and the quantum dots.

In the one-dimensional tight-binding nearest-neighbour approximation, the Hamiltonian
for the lead (equation (2)) is tridiagonal and can be written as

H =




0 t 0 · · ·
t 0 t · · ·
0 t 0

. . .
...

...
. . .

. . .


 . (B.1)

The Green function of the lead can be obtained by

G = (ω − H )−1 =




G00 G01 G02 · · ·
G10 G11 G12 · · ·
G20 G21 G22

. . .
...

...
. . .

. . .


 . (B.2)

From equations (B.1) and (B.2) and assuming that Gn0 → 0 when n → ∞, G00 can be
iteratively solved by

G00 = 1

ω − �i

∣∣∣∣
i→∞

, (B.3)

where
�i+1 = �i + ti (ω − Ui)ti
ti+1 = ti(ω − Ui)

−1ti
Ui+1 = Ui + 2ti(ω − Ui)

−1ti .
(B.4)

The initial values for t0, U0, and �0 are

t0 = t; and U0 = �0 = 0. (B.5)

Then the self-energy due to coupling between the quantum dots and the lead can be written
as

�(ω) = HCLG00 HLC, (B.6)

where HLC and HCL describe the tunnelling onto (off) the quantum dots from the lead. The
retarded self-energy is calculated from �r(ω) = �(ω+iδ), where δ is an infinitesimal positive
number. The calculated self-energy profile is illustrated in figure B.1. The maximum of the
imaginary part of � appears at the energy of the dot electron level, while the real part of � at
that point is zero.
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